Sa proseso ng pag-aaral ng statics, na isa sa mga bahaging bumubuo ng mechanics, ang pangunahing tungkulin ay ibinibigay sa mga axiom at pangunahing konsepto. Mayroon lamang limang pangunahing axiom. Ang ilan sa kanila ay kilala mula sa mga aralin sa pisika ng paaralan, dahil ang mga ito ay mga batas ni Newton.
Kahulugan ng mekanika
Una sa lahat, dapat itong banggitin na ang statics ay isang subset ng mechanics. Ang huli ay dapat na inilarawan nang mas detalyado, dahil ito ay direktang nauugnay sa statics. Kasabay nito, ang mechanics ay isang mas pangkalahatang termino na pinagsasama ang dynamics, kinematics at statics. Ang lahat ng mga paksang ito ay pinag-aralan sa kursong pisika ng paaralan at kilala ng lahat. Kahit na ang mga axiom na kasama sa pag-aaral ng statics ay batay sa mga batas ni Newton na kilala mula sa mga taon ng paaralan. Gayunpaman, mayroong tatlo sa kanila, habang ang mga pangunahing axiom ng statics ay lima. Karamihan sa kanila ay may kinalaman sa mga panuntunan para sa pagpapanatili ng balanse at pare-parehong paggalaw ng rectilinear ng isang partikular na katawan o materyal na punto.
Ang Mechanics ay ang agham ng pinakasimpleng paraan ng paggalawbagay - mekanikal. Ang pinakasimpleng paggalaw ay itinuturing na mga pagkilos na nababawasan sa paggalaw sa espasyo at oras ng isang pisikal na bagay mula sa isang posisyon patungo sa isa pa.
Ano ang pinag-aaralan ng mekanika
Sa theoretical mechanics, ang mga pangkalahatang batas ng paggalaw ay pinag-aaralan nang hindi isinasaalang-alang ang mga indibidwal na katangian ng katawan, maliban sa mga katangian ng extension at gravity (ito ay nagpapahiwatig ng mga katangian ng mga particle ng bagay na magkakaugnay o magkaroon ng isang tiyak na timbang).
Ang mga pangunahing kahulugan ay kinabibilangan ng mekanikal na puwersa. Ang terminong ito ay tumutukoy sa paggalaw, na mekanikal na ipinadala mula sa isang katawan hanggang sa pangalawa sa panahon ng pakikipag-ugnayan. Ayon sa maraming mga obserbasyon, natukoy na ang puwersa ay itinuturing na isang dami ng vector, na nailalarawan sa pamamagitan ng direksyon at punto ng aplikasyon.
Sa mga tuntunin ng paraan ng pagtatayo, ang theoretical mechanics ay katulad ng geometry: ito ay nakabatay din sa mga kahulugan, axiom at theorems. Bukod dito, ang koneksyon ay hindi nagtatapos sa mga simpleng kahulugan. Karamihan sa mga guhit na nauugnay sa mekanika sa pangkalahatan at static sa partikular ay naglalaman ng mga geometric na panuntunan at batas.
Theoretical mechanics ay kinabibilangan ng tatlong subsection: statics, kinematics at dynamics. Sa una, ang mga pamamaraan ay pinag-aralan para sa pagbabago ng mga puwersa na inilapat sa isang bagay at isang ganap na matibay na katawan, pati na rin ang mga kondisyon para sa paglitaw ng ekwilibriyo. Sa kinematics, ang isang simpleng mekanikal na paggalaw ay isinasaalang-alang, na hindi isinasaalang-alang ang mga kumikilos na pwersa. Sa dinamika, pinag-aaralan ang mga paggalaw ng isang punto, isang sistema, o isang matibay na katawan, na isinasaalang-alang ang mga puwersang kumikilos.
Axioms of statics
Una, isaalang-alangmga pangunahing konsepto, axioms ng statics, mga uri ng koneksyon at ang kanilang mga reaksyon. Ang statics ay isang estado ng ekwilibriyo na may mga puwersa na inilalapat sa isang ganap na matibay na katawan. Kasama sa mga gawain nito ang dalawang pangunahing punto: 1 - ang mga pangunahing konsepto at axiom ng statics ay kinabibilangan ng pagpapalit ng karagdagang sistema ng mga puwersa na inilapat sa katawan ng isa pang sistemang katumbas nito. 2 - derivation ng mga pangkalahatang tuntunin kung saan ang katawan sa ilalim ng impluwensya ng inilapat na puwersa ay nananatili sa isang estado ng pahinga o sa proseso ng pare-parehong translational rectilinear motion.
Ang mga bagay sa naturang mga sistema ay karaniwang tinatawag na isang materyal na punto - isang katawan na ang mga sukat ay maaaring tanggalin sa ilalim ng mga ibinigay na kundisyon. Ang isang set ng mga punto o katawan na magkakaugnay sa ilang paraan ay tinatawag na isang sistema. Ang mga puwersa ng mutual na impluwensya sa pagitan ng mga katawan na ito ay tinatawag na panloob, at ang mga puwersang nakakaapekto sa sistemang ito ay tinatawag na panlabas.
Ang resultang puwersa sa isang tiyak na sistema ay isang puwersang katumbas ng pinababang sistema ng mga puwersa. Ang mga pwersang bumubuo sa sistemang ito ay tinatawag na constituent forces. Ang puwersa ng pagbabalanse ay katumbas ng magnitude sa resulta, ngunit nakadirekta sa kabaligtaran na direksyon.
Sa statics, kapag nilulutas ang problema ng pagbabago ng sistema ng mga puwersa na nakakaapekto sa isang matibay na katawan, o ang balanse ng mga puwersa, ginagamit ang mga geometric na katangian ng mga vector ng puwersa. Mula dito nagiging malinaw ang kahulugan ng geometric statics. Ang mga analytical static batay sa prinsipyo ng mga tinatanggap na displacement ay ilalarawan sa dynamics.
Mga pangunahing konsepto at axiomstatics
Ang mga kundisyon para sa isang katawan na nasa equilibrium ay hinango mula sa ilang pangunahing batas, na ginagamit nang walang karagdagang ebidensya, ngunit nakumpirma sa anyo ng mga eksperimento, na tinatawag na axioms of statics.
- Ang Axiom I ay tinatawag na unang batas ni Newton (axiom of inertia). Ang bawat katawan ay nananatili sa isang estado ng pahinga o pare-parehong rectilinear motion hanggang sa sandali kapag ang mga panlabas na pwersa ay kumilos sa katawan na ito, na inaalis ito mula sa estado na ito. Ang kakayahang ito ng katawan ay tinatawag na inertia. Isa ito sa mga pangunahing katangian ng matter.
- Axiom II - Ang ikatlong batas ni Newton (ang axiom ng interaksyon). Kapag ang isang katawan ay kumilos sa isa pa na may isang tiyak na puwersa, ang pangalawang katawan, kasama ang una, ay kikilos dito na may isang tiyak na puwersa, na katumbas ng ganap na halaga, sa tapat ng direksyon.
- Axiom III - ang kondisyon para sa balanse ng dalawang puwersa. Upang makuha ang balanse ng isang libreng katawan, na nasa ilalim ng impluwensya ng dalawang pwersa, sapat na ang mga puwersang ito ay pareho sa kanilang modulus at kabaligtaran sa direksyon. Ito ay nauugnay din sa susunod na punto at kasama sa mga pangunahing konsepto at axiom ng statics, ang equilibrium ng isang sistema ng pababang pwersa.
- Axiom IV. Ang ekwilibriyo ay hindi maaabala kung ang isang balanseng sistema ng pwersa ay ilalapat o inalis mula sa isang matibay na katawan.
- Ang Axiom V ay ang axiom ng parallelogram ng mga puwersa. Ang resulta ng dalawang intersecting na pwersa ay inilapat sa punto ng kanilang intersection at kinakatawan ng dayagonal ng parallelogram na binuo sa mga puwersang ito.
Mga koneksyon at kanilang mga reaksyon
Sa theoretical mechanics ng isang materyal na punto,Dalawang kahulugan ang maaaring ibigay sa isang sistema at isang matibay na katawan: libre at hindi libre. Ang pagkakaiba sa pagitan ng mga salitang ito ay kung ang mga paunang tinukoy na mga paghihigpit ay hindi ipapataw sa paggalaw ng isang punto, katawan o sistema, kung gayon ang mga bagay na ito sa pamamagitan ng kahulugan ay magiging libre. Sa kabaligtaran na sitwasyon, ang mga bagay ay karaniwang tinatawag na hindi libre.
Ang mga pisikal na pangyayari na humahantong sa paghihigpit sa kalayaan ng mga pinangalanang materyal na bagay ay tinatawag na mga bono. Sa statics, maaaring may mga simpleng koneksyon na ginagawa ng iba't ibang matibay o flexible na katawan. Ang puwersa ng pagkilos ng bono sa isang punto, sistema o katawan ay tinatawag na reaksyon ng bono.
Mga uri ng koneksyon at ang kanilang mga reaksyon
Sa ordinaryong buhay, ang koneksyon ay maaaring katawanin ng mga sinulid, sintas, tanikala o lubid. Sa mechanics, ang mga walang timbang, nababaluktot at hindi napapalawak na mga bono ay kinuha para sa kahulugang ito. Ang mga reaksyon, ayon sa pagkakabanggit, ay maaaring ituro sa isang thread, isang lubid. Kasabay nito, may mga koneksyon, ang mga linya ng aksyon na hindi agad matukoy. Bilang halimbawa ng mga pangunahing konsepto at axiom ng statics, maaari tayong magbanggit ng nakapirming cylindrical hinge.
Ito ay binubuo ng isang nakapirming cylindrical bolt, kung saan inilalagay ang isang manggas na may cylindrical hole, na ang diameter nito ay hindi lalampas sa laki ng bolt. Kapag ang katawan ay nakakabit sa bushing, ang una ay maaaring paikutin lamang sa kahabaan ng axis ng bisagra. Sa isang perpektong bisagra (sa kondisyon na ang friction ng ibabaw ng manggas at ang bolt ay napapabayaan), isang balakid ang lilitaw para sa pag-aalis ng manggas sa isang direksyon na patayo sa ibabaw ng bolt at manggas. Para sa kadahilanang ito, ang reaksyonAng isang perpektong bisagra ay may direksyon kasama ang normal - ang radius ng bolt. Sa ilalim ng impluwensya ng mga kumikilos na pwersa, ang bushing ay magagawang pindutin laban sa bolt sa isang di-makatwirang punto. Sa pagsasaalang-alang na ito, ang direksyon ng reaksyon sa isang nakapirming cylindrical hinge ay hindi maaaring matukoy nang maaga. Mula sa reaksyong ito, tanging ang lokasyon nito sa eroplano na patayo sa axis ng bisagra ang maaaring malaman.
Sa panahon ng paglutas ng mga problema, ang reaksyon ng bisagra ay itatatag sa pamamagitan ng analytical na pamamaraan sa pamamagitan ng pagpapalawak ng vector. Kasama sa mga pangunahing konsepto at axiom ng statics ang pamamaraang ito. Ang mga halaga ng mga projection ng reaksyon ay kinakalkula mula sa mga equation ng equilibrium. Ganoon din ang ginagawa sa ibang mga sitwasyon, kabilang ang imposibilidad na matukoy ang direksyon ng reaksyon ng bono.
System of converging forces
Ang bilang ng mga pangunahing kahulugan ay maaaring magsama ng isang sistema ng mga puwersang nagtatagpo. Ang tinatawag na sistema ng nagtatagpong pwersa ay tatawaging isang sistema kung saan ang mga linya ng aksyon ay nagsalubong sa isang punto. Ang sistemang ito ay humahantong sa isang resulta o nasa isang estado ng ekwilibriyo. Ang sistemang ito ay isinasaalang-alang din sa naunang nabanggit na mga axiom, dahil nauugnay ito sa pagpapanatili ng balanse ng katawan, na binanggit sa ilang mga posisyon nang sabay-sabay. Ang huli ay nagpapahiwatig ng parehong mga dahilan na kinakailangan upang lumikha ng isang ekwilibriyo, at ang mga salik na hindi magiging sanhi ng pagbabago sa estadong ito. Ang resulta ng sistemang ito ng converging forces ay katumbas ng vector sum ng mga pinangalanang pwersa.
Equilibrium ng system
Ang sistema ng nagtatagpong pwersa ay kasama rin sa mga pangunahing konsepto at axiom ng estatika kapag nag-aaral. Upang mahanap ang sistema sa equilibrium, ang mekanikal na kondisyonnagiging zero value ng resultang puwersa. Dahil ang vector sum ng mga puwersa ay zero, ang polygon ay itinuturing na sarado.
Sa isang analytical form, ang kondisyon ng equilibrium ng system ay ang mga sumusunod: isang spatial system ng converging forces sa equilibrium ay magkakaroon ng algebraic sum ng force projections sa bawat coordinate axes na katumbas ng zero. Dahil sa ganoong sitwasyon ng equilibrium ang resulta ay magiging zero, ang mga projection sa coordinate axes ay magiging zero din.
Sandali ng puwersa
Ang kahulugan na ito ay nangangahulugan ng vector product ng force application point vector. Ang vector ng moment of force ay nakadirekta patayo sa eroplano kung saan nakahiga ang puwersa at ang punto, sa direksyon kung saan ang pag-ikot mula sa pagkilos ng puwersa ay nakikitang nangyayari counterclockwise.
Pair of powers
Tumutukoy ang kahulugang ito sa isang sistemang binubuo ng isang pares ng magkatulad na puwersa, katumbas ng magnitude, nakadirekta sa magkasalungat na direksyon at inilapat sa isang katawan.
Ang sandali ng isang pares ng mga puwersa ay maaaring ituring na positibo kung ang mga puwersa ng pares ay nakadirekta nang pakaliwa sa kanan-kamay na coordinate system, at negatibo - kung ang mga ito ay nakadirekta nang pakanan sa kaliwang bahagi ng coordinate system. Kapag nagsasalin mula sa kanang sistema ng coordinate patungo sa kaliwa, ang oryentasyon ng mga puwersa ay nababaligtad. Ang pinakamababang halaga ng distansya sa mga linya ng pagkilos ng mga puwersa ay tinatawag na balikat. Mula dito ay sumusunod na ang sandali ng isang pares ng pwersa ay isang libreng vector, modulo na katumbas ng M=Fh at pagkakaroon ng patayo sa eroplano ng pagkilos.ang direksyon na mula sa itaas ng ibinigay na force vector ay naka-orient nang positibo.
Equilibrium sa mga arbitraryong sistema ng pwersa
Ang kinakailangang kondisyon ng ekwilibriyo para sa isang arbitrary na spatial system ng mga puwersang inilapat sa isang matibay na katawan ay ang paglalaho ng pangunahing vector at sandali na may kinalaman sa anumang punto sa espasyo.
Mula rito, sumusunod na upang makamit ang isang ekwilibriyo ng magkatulad na puwersa na matatagpuan sa parehong eroplano, kinakailangan at sapat na ang resultang kabuuan ng mga projection ng mga puwersa sa isang parallel na axis at ang algebraic na kabuuan ng lahat ng bahagi ang mga sandali na ibinigay ng mga puwersa na nauugnay sa isang random na punto ay katumbas ng zero.
Sentro ng grabidad ng katawan
Ayon sa batas ng unibersal na grabitasyon, ang bawat particle sa paligid ng ibabaw ng Earth ay apektado ng mga kaakit-akit na puwersa na tinatawag na gravity. Sa maliit na sukat ng katawan sa lahat ng mga teknikal na aplikasyon, maaaring isaalang-alang ng isa ang mga puwersa ng grabidad ng mga indibidwal na particle ng katawan bilang isang sistema ng halos magkatulad na puwersa. Kung isasaalang-alang natin ang lahat ng puwersa ng gravity ng mga particle na magkatulad, ang resulta ng mga ito ay magiging numerical na katumbas ng kabuuan ng mga bigat ng lahat ng mga particle, ibig sabihin, ang bigat ng katawan.
Paksa ng kinematics
Ang Kinematics ay isang sangay ng theoretical mechanics na nag-aaral sa mekanikal na paggalaw ng isang punto, isang sistema ng mga punto at isang matibay na katawan, anuman ang mga puwersang nakakaapekto sa kanila. Si Newton, na nagpapatuloy mula sa isang materyalistikong posisyon, ay itinuturing na ang kalikasan ng espasyo at oras ay layunin. Ginamit ni Newton ang kahulugan ng absoluteespasyo at panahon, ngunit pinaghiwalay sila sa gumagalaw na bagay, kaya matatawag siyang metaphysician. Itinuturing ng dialectical materialism ang espasyo at oras bilang mga layuning anyo ng pagkakaroon ng bagay. Ang espasyo at oras na walang bagay ay hindi maaaring umiral. Sa theoretical mechanics, sinasabing ang espasyo kasama ang mga gumagalaw na katawan ay tinatawag na three-dimensional Euclidean space.
Kung ikukumpara sa theoretical mechanics, ang teorya ng relativity ay nakabatay sa iba pang konsepto ng espasyo at oras. Ang paglitaw ng isang bagong geometry na nilikha ni Lobachevsky ay nakatulong. Hindi tulad ng Newton, hindi pinaghiwalay ni Lobachevsky ang espasyo at oras mula sa pangitain, na isinasaalang-alang ang huli na isang pagbabago sa posisyon ng ilang mga katawan na may kaugnayan sa iba. Sa kanyang sariling akda, itinuro niya na sa kalikasan, ang paggalaw lamang ang alam ng tao, kung wala ang pandama na representasyon ay nagiging imposible. Kasunod nito na ang lahat ng iba pang mga konsepto, halimbawa, mga geometriko, ay artipisyal na nilikha ng isip.
Mula rito ay malinaw na ang espasyo ay itinuturing na isang manipestasyon ng koneksyon sa pagitan ng mga gumagalaw na katawan. Halos isang siglo bago ang teorya ng relativity, itinuro ni Lobachevsky na ang Euclidean geometry ay nauugnay sa abstract geometric system, habang sa pisikal na mundo ang mga spatial na relasyon ay tinutukoy ng pisikal na geometry, na naiiba sa Euclidean, kung saan ang mga katangian ng oras at espasyo ay pinagsama. na may mga katangian ng bagay na gumagalaw sa espasyo. at oras.
HindiKapansin-pansin na ang mga nangungunang siyentipiko mula sa Russia sa larangan ng mekanika ay sinasadya na sumunod sa tamang materyalistikong mga posisyon sa interpretasyon ng lahat ng mga pangunahing kahulugan ng teoretikal na mekanika, sa partikular na oras at espasyo. Kasabay nito, ang opinyon tungkol sa espasyo at oras sa teorya ng relativity ay katulad ng mga ideya tungkol sa espasyo at oras ng mga tagasuporta ng Marxism, na nilikha bago ang paglitaw ng mga gawa sa teorya ng relativity.
Kapag nagtatrabaho sa theoretical mechanics habang sinusukat ang espasyo, ang metro ay kinukuha bilang pangunahing yunit, at ang pangalawa ay kinukuha bilang oras. Ang oras ay pareho sa bawat frame ng sanggunian at independiyente sa paghahalili ng mga sistemang ito na may kaugnayan sa isa't isa. Ang oras ay ipinahiwatig ng isang simbolo at itinuturing bilang isang tuluy-tuloy na variable na ginagamit bilang isang argumento. Sa panahon ng pagsukat ng oras, inilalapat ang mga kahulugan ng agwat ng oras, sandali ng oras, paunang oras, na kasama sa mga pangunahing konsepto at axiom ng statics.
Mga teknikal na mekanika
Sa praktikal na aplikasyon, ang mga pangunahing konsepto at axiom ng statics at technical mechanics ay magkakaugnay. Sa teknikal na mekanika, parehong ang mekanikal na proseso ng paggalaw mismo at ang posibilidad ng paggamit nito para sa mga praktikal na layunin ay pinag-aaralan. Halimbawa, kapag lumilikha ng mga teknikal at istrukturang gusali at sinusubukan ang mga ito para sa lakas, na nangangailangan ng isang maikling kaalaman sa mga pangunahing konsepto at axiom ng statics. Kasabay nito, ang gayong maikling pag-aaral ay angkop lamang para sa mga amateur. Sa mga dalubhasang institusyong pang-edukasyon, ang paksang ito ay may malaking kahalagahan, halimbawa, sa kaso ng sistema ng pwersa, mga pangunahing konsepto ataxioms ng statics.
Sa mga teknikal na mekanika, inilalapat din ang mga axiom sa itaas. Halimbawa, ang axiom 1, mga pangunahing konsepto at axiom ng statics ay nauugnay sa seksyong ito. Habang ang pinakaunang axiom ay nagpapaliwanag sa prinsipyo ng pagpapanatili ng ekwilibriyo. Sa teknikal na mekanika, ang isang mahalagang papel ay ibinibigay hindi lamang sa paglikha ng mga aparato, kundi pati na rin sa mga matatag na istruktura, sa pagtatayo kung saan ang katatagan at lakas ay ang pangunahing pamantayan. Gayunpaman, imposibleng lumikha ng isang bagay na tulad nito nang hindi nalalaman ang mga pangunahing axiom.
Mga pangkalahatang komento
Ang pinakasimpleng anyo ng paggalaw ng mga solidong katawan ay kinabibilangan ng pagsasalin at paikot na paggalaw ng katawan. Sa kinematics ng mga matibay na katawan, para sa iba't ibang uri ng paggalaw, ang mga kinematic na katangian ng paggalaw ng iba't ibang mga punto nito ay isinasaalang-alang. Ang paikot na paggalaw ng isang katawan sa paligid ng isang nakapirming punto ay isang paggalaw kung saan ang isang tuwid na linya na dumadaan sa isang pares ng mga di-makatwirang punto sa panahon ng paggalaw ng katawan ay nananatiling pahinga. Ang tuwid na linyang ito ay tinatawag na axis ng pag-ikot ng katawan.
Sa teksto sa itaas, maikling ibinigay ang mga pangunahing konsepto at axiom ng estatika. Kasabay nito, mayroong isang malaking halaga ng impormasyon ng third-party kung saan mas mauunawaan mo ang mga istatistika. Huwag kalimutan ang pangunahing data, sa karamihan ng mga halimbawa ang mga pangunahing konsepto at axiom ng statics ay may kasamang ganap na matibay na katawan, dahil ito ay isang uri ng pamantayan para sa isang bagay na maaaring hindi maabot sa ilalim ng normal na mga kondisyon.
Kung gayon dapat nating tandaan ang mga axiom. Halimbawa, ang mga pangunahing konsepto at axiomstatics, bonds at ang kanilang mga reaksyon ay kabilang sa kanila. Sa kabila ng katotohanan na maraming axioms ang nagpapaliwanag lamang sa prinsipyo ng pagpapanatili ng ekwilibriyo o pare-parehong paggalaw, hindi nito binabalewala ang kanilang kahalagahan. Simula sa kurso sa paaralan, ang mga axiom at panuntunang ito ay pinag-aaralan, dahil sila ang mga kilalang batas ni Newton. Ang pangangailangang banggitin ang mga ito ay konektado sa praktikal na aplikasyon ng kaalaman sa statics at mechanics sa pangkalahatan. Ang isang halimbawa ay teknikal na mekanika, kung saan, bilang karagdagan sa paglikha ng mga mekanismo, kinakailangan na maunawaan ang prinsipyo ng pagdidisenyo ng mga napapanatiling gusali. Salamat sa impormasyong ito, posible ang tamang pagtatayo ng mga ordinaryong istruktura.